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Abstract 
 
Recreational waterways and related tourism are economically integral aspects of coastal 

communities but can harbor environmental challenges, such as degraded water quality. To characterize 
the water quality within the Atlantic Beach canal system, our study focused on two main canals, which 
are representative of both the simple and geometrically complex canals within this system. Water quality 
can be influenced by stormwater runoff introducing excess nutrients and septic waste into the system, 
generating phytoplankton blooms and increased bacterial concentrations. Our study found that nutrients, 
phytoplankton, and bacterial concentrations were highest at the end of the longer, more geometrically 
complex canal where flushing was minimal and residence time was longer. Sites with better water quality 
had high flushing and short residence times. Therefore, locations with potential water quality concerns 
would be present at the ends of the canals within the system. There is a need to investigate these 
parameters during other seasons in order to better characterize the water quality in the canal system to 
ensure continued economic contributions, promote human health, and sustain ecosystem services 
provided by these recreational waterways. 
 

 
Introduction 

 
As coastal development continues to expand, knowledge about the ways in which infrastructure 

impacts water systems is increasingly important. In North Carolina (NC), understanding the influences of 
development on water quality is critical given predicted population growth. Nationally, coastal counties 
make up 10% of land mass, but accommodate 39% of the population (NOAA, 2013). According to the 
North Carolina Office of State Budget and Management, the NC coastline is projected to experience 
population growth of 26% by 2020, and Carteret County, the broader region around the site of our study, 
is projected to grow by 12.9% (OSBM, 2017).  

The focus of our study is the Atlantic Beach canal system. Historically, the canals offered 
waterfront real estate in a desirable location creating opportunity for waterfront access and tourism. In the 
summer months the local population of around 1,495 people can expand to roughly 45,000 individuals 
(HCP, 2008). This influx of people emphasizes the importance of maintaining high water quality. 
Anthropogenic runoff can have adverse effects on recreational waters typically used for swimming, 
kayaking, paddle boarding, boating, etc. 

Two sites within the canal system were assumed representative of the differential tidal exposure 
and flushing dynamics within the canal system (Fig. 0.1). Site 1, the shorter canal, is representative of 
canals that are presumably more directly influenced by tides. Site 1 is approximately 238.0 m in length, 
21.0-29.0 m wide, and 1.5 m deep at mean tide, and provides insight regarding short, near-sound canals. 
Site 2, the longer canal, is approximately 688 m in length, 30.0-73.0 m wide, and 1.5-4.5 m deep at mean 
tide, and is representative of a larger canal that is more geometrically complex and further from the sound 
relative to canals like Site 1. The study period occurred after Hurricane Florence made landfall in North 
Carolina on 9 September 2018, and both before and after Tropical Storm Michael made landfall on 11 
October 2018. The influence of these weather events and antecedent rainfall were considered and 
incorporated into the interpretations. 
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surface and ground waters (Parker et al., 2010). Because the North Carolina coast is characterized by a 
narrow vadose zone and a high water table, it is especially important to consider the risk of contamination 
of the groundwater due to the prevalence of OWTS (USGS, 2018; Mallin, 2013). Evaluating the presence 
of OWTS is important in this study as the canal system was constructed on top of existing marshes and 
wetlands, using dredged salt marsh fill as a foundation (HCP, 2008). Understanding the prevalence of 
impervious surfaces and the potential for groundwater inputs is imperative in order to promote the health 
of residential and recreational waterways. Runoff has been shown to be a major contributor of 
contaminants; therefore, addressing overland flow can be helpful in promoting overall water quality 
(Selvakumar and Borst, 2006). Groundwater inputs, the distribution and role of impervious surfaces, and 
OWTS can be used to infer over-land and subsurface water movement and their relative magnitude of 
impact on water quality in the canal system. Investigation of these measures may help identify potential 
water quality hazards associated with coastal development, and orient development towards restorative 
interventions to maintain and ensure the health and longevity of NC coastlines. 

Using aerial and land-based observations translated into statistical mapping methods in a 
Geographic Information System (QGIS) we identified pervious and impervious surface coverage to 
indicate the potential pathways of surface runoff. We utilized spatial analyses of houses and septic tanks 
along with construction permits to calculate residential density and determine OWTS location and age. 
We conducted storm drain surveys and compiled slope elevation data to make inferences regarding the 
amount and direction of surface runoff potentially captured or directed into the waterway.  
 

2.  METHODS  
 
To emplace the aerial imagery into a coordinate system, we used the georeference plugin in 

QGIS. We merged high-resolution orthoimages from 2012 (USGS, 2009) to illustrate the full extent of 
the area that was sampled. We computed all layers and analysis using the georeferenced imagery and 
Universal Transverse Mercator (UTM) zone 18S projection. 
 

2.1 Land Cover  
Normalized Difference Vegetation Index (NDVI) is a quantifiable land-use indicator, and is 

calculated using the ratio of the near infrared (NIR) to red (RED) bands within a four-band raster image 
obtained from USGS EarthExplorer (EE). 

 

ܫܸܦܰ ൌ ேூோି

ேூோା
     (1.1) 

 
NDVI values range from -1 to 1 and represent non-vegetated to densely vegetated areas, 

respectively. Using raster algebra, we reclassified each type of land cover and assigned categories as 
either homes, pavements, or shrubs/grass. Both homes and pavement were considered impervious 
surfaces in calculations. We used the Clipper tool to delineate the canal land area of interest to obtain 
canal-specific coverage statistics that effectively cropped out the surrounding area as much as possible.  
The water surfaces that were not completely removed using the Clipper tool were excluded from 
calculations of percent area coverage. The Zonal Statistics plugin was used to compute the number of 
raster grid cells that contained the reclassified values for the respective categories. Raster grid cells 
represented 1 m2. The number of raster cells within each land category was compared to the total number 
of raster cells within the clip to obtain the percentage of total vegetative cover and total impervious cover. 

 
2.2 Stormwater and Slope Elevation  

We measured and recorded the dimensions of storm drains throughout the entire canal system. 
Ratios relating the total area of all storm drains to the total land area and to the total area of impervious 
surfaces were calculated in order to make inferences about the effectiveness of the storm water capture 
system. Storm drain surveys were compared to slope elevation data from LiDAR-derived imagery data 



 

obtained f
Atlantic B
SlopeMap
gradient d
and steep 
about flow

 
2.3 

T
relevant fo
delineate 
Permit an
from the t
mark the l
date recor
permit rec
histogram
simultane
using the 
 
3. RESUL
 

3.1 
N

from 0.6 t
rock/sand
vegetation
& Gurugn
1.1) illust
around th
identified 
verified v
as the maj
lawns wit
noteworth
area withi
0.015 - 0.
for ~60% 
exceeding
~123,200 

3.2 
Su

land area 
Hurricane
likely due
would dir

S
creating a

from the USG
Beach using a
p layer was se
displays the d
surfaces as re

w direction of

Development
The density dis
for estimating
each housing
d constructio
town of Atlan
location of se
rded in the pe
cords. Gradua

m was created 
eously observe
aforemention

LTS 

NDVI and Ph
NDVI values >
to 0.9 are typi

d/water, shrub
n cover types 
nanam, 2014)
rates that the 
e canal system
here as shrub
ia qualitative 
jority of prop
th generally lo
hy that just ov
in the canal is
278). The imp
of the land ar

g pervious sur
m2). 

Runoff  
urveys reveal
and the total 

e Florence als
e to the storm
rect stormwate
lope elevation

a convex shap

GS National M
a site-specific 
elected to prov
egree of slope
ed. The locati
f stormwater a

t  
stribution of h
anthropogen

g location and
n documentat

ntic Beach fro
eptic tanks for
ermits. We als
ated categoriz
to display the
e housing dev

ned point vect

hysical Chara
>0.1, from 0.2
ically classifi

bs and grass, o
respectively 
. The NDVI a
dominant lan

m is pervious 
bs/grass. This
field surveys

perties have so
ow plant dive
ver half of the
s sparse (Fig. 
pervious cove
rea (203,038 
rface by ~20%

l that the total
impervious su

so revealed th
. Further, the 
er towards the
n shows flat a

pe that slopes 

Map Viewer (
search and a 
vide a visuali
e with flat sur
ion of flat to i
across the lan

houses and th
nic influences 
d used a heatm
tion for all ho

om the Cartere
r which there 
so compiled r
zation was use
e canal OWT
velopment an
tor layer.  

acteristics  
2 to 0.5, or 
ed as barren 

or dense 
(Palanisamy 
analysis (Fig.
nd cover 

surface, 
s was further 
s of the area, 
odded grass 
ersity. It is 
e total land 
1.2; NDVI: -
er accounts 
m2), 

% (or 

l storm drain 
urface area (T
at many storm
storm drains 
e drain.  
areas (gray) a
towards the r

TNM Viewer
fine scale ma

ization of slop
rfaces as gray
intense degre
nd surface. 

he age of the a
on the canal 

map plugin to 
omes within th
et County off
were data, ad
elevant writte
ed to classify 
S age distribu
d septic tank 

 

-

areas made u
Table 1.1). Qu
m drains were
were not typi

are most preva
receiving wate

r). We outline
agnification fe
pe intensity w
y, shallow as 
es of slope al

associated wa
system. We c
visualize area
he canal syste
ficial website.
dded a field fo
en statements
those dates u

ution. The hea
densities with

up less than 1%
ualitative fiel
e covered by n
ically located

alent along th
er body (Fig. 

ed the canal s
feature (1:902
within the can
yellow, mode
llows for infe

astewater trea
created a poin
as of higher h
em was forma
. We created 

for the connec
s found within
using a color g
atmap plugin
hin the entire

Figu

% (33.49 m2) 
ld surveys con
natural and h

d in shallow d

he centerline o
 1.3). Shallow

system within
28). An elevat
nal system. A 
erate as orang
rences to be m

atment system
nt layer to 
housing densi
ally requested
a point layer 

ction or instal
n septic system
gradient, and 

n was used to 
e canal system

ure 1.1 NDVI v

 of both the to
nducted after 

household deb
depressions th

of the canal a
w slope (yello

8 

n 
tion 
color 

ge, 
made 

ms are 

ity. 
d 
to 
lation 
m 
a 

m 

values. 

otal 

bris, 
hat 

arms, 
ow) is 



 

concentra
complete 
 

 
 

 

Figure 1.2. N
System. The “
of water that a
cover. 

 
Table 1.2 

Storm d

Storm d

ated around ca
western edge

NDVI Reclassif
“other” categor
are not relevan

Storm drain ar

rain area (m2

33.49 

rain area (m2

33.49 

anal edges wh
e of the canal 

Table 1.

Land C

Homes/P

Vegetati

To

fication for Atla
ry includes roo
t to impervious

rea ratios to tot

2) T

2) Total I

hile moderate 
system. 

1 Surface area 

Category  Su

Pavement 

ion 

otal  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

antic Beach Ca
ofs of homes an
s and pervious 

al land area an

Total Land Ar

529,357 

Impervious La

203,038 

and steep slo

coverage for e

urface Area (m2

203,038 

326,319 

529,357 

 
 
 
 
 

anal 
nd areas 

surface 

   

nd impervious l

rea 

and Area 

opes (orange 

each land categ
2) % Cove

38.36%

61.64%

100%

      Figure 1.3

land area. 

% of Area S

>0.001

% of Area S

>0.015

to red) are fo

gory.  

er  

% 

% 

3. Degree of slo

Serviced  

% 

Serviced  

5% 

ound along the

ope. 

9 

e 



 

Figure 1.4
 

 
3.3 

T
heatmap i
and along
densely p
Outside o
According
thus it is n
future. Th
considere

4. Housing den

Infrastructur
There were 56
illustrates a hi
g the bottom o
acked (approx
f these high-d
g to the 2012 
not expected t
herefore, the d
d representati

sity within the 

Figure 1

re  
5 distinct vec
igher density 
of the image (
ximately 1 tra
density areas,
aerial imager

that the non-v
data are repre
ive of the futu

canal system. 

.6. Histogram 

ctor points plo
near the entra

(Fig. 1.4). The
ailer home/29
 development
ry (USGS, 20
vegetative, im
sentative of th
ure.  

   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

       
         Figure 1

of OWTS age 

otted to repres
ance of the ca
ese areas are l
90 m2), often t
t is relatively 

009), only thre
mpervious land

he state of the

1.5. Categorizat

within the can

sent developm
anal system a
largely occup
times onto on

y uniform thro
ee lots within
d cover will c
e canal system

tion of septic t

nal system.  

ment througho
at the top port
pied by trailer
ne property pl
oughout the ca
n the canal are
change signif
m at present, 

tanks by install

 

out the canal.
tion of the ima
r homes that w
lot (Table 1.3
anal system. 
e presently va
ficantly in the
and can be 

10 

lment date. 

. The 
age 
were 
3). 

acant, 
 



 

11 

Records regarding septic tank installations were obtained for seven streets and 129 houses in the 
canal system (Figs. 1.4 & 1.5). The average installation date was 1994. The majority of the septic systems 
were 1,000 gallon tanks approved for a single home installed 5-10 ft from the home. Out of the subset of 
38 trailer homes for which there were relevant records, 14 shared a septic system (40%) that was 1,000-
1,500 gallons on average. 
 
Table 1.3. Excerpts of written statements from permitting and construction documents received from the town. 
Permission granted by the town of Atlantic Beach. 

Housing Unit Subject  Enclosed Comments  

133 Bowen St Permit Unapproved "... unsuitable due to a high water table (less than 12” of 
original surface, Rule 1942). The lot consists of 48" to 58" 
of dredged fill which is not naturally occurring soil 
conditions. The material which is below the fill is of a salt 
marsh origin and is considered unsuitable for septic tank 
systems" 

304 & 305 N 
Shore Dr I 

Construction Requirement “Existing septic tank must be properly abandoned.” 

511 & 512 N 
Shore Dr I 

Infrastructure Plan “The system is under-sized due to severe site limitations 
and cannot be expected to function under heavy use. 
Practice extreme water conservation. If this system fails, 
these two mobile homes must be removed from the park or 
put on permanent pump and haul.” 

 
 
4.  DISCUSSION  

  
4.1 Surface Cover and Runoff 

The amount of impervious land coverage is approaching 40% which classifies this area as an 
impacted-to-damaged landscape (Table 1.1; Schueler, 2000). During a precipitation event, impervious 
surface cover would result in higher runoff volumes and reduced deep and shallow infiltration 
respectively, inhibiting the amount of groundwater recharge (Schueler, 1995). Areas with impervious 
cover >30% results in 20% increase in runoff and 15% less ground infiltration compared to natural 
ground cover (Arnold and Gibbons, 1996). 

 Given that the narrow unsaturated zone and the sparse pervious land cover quickly becomes 
saturated during heavy rainfall, stormwater may not infiltrate the soil or be abated by vegetation. Thus, 
because impervious cover is roughly 2/5 of the land surface in the canal system, the majority of 
stormwater likely flows overland at a faster rate and at higher volumes than a natural, unurbanized 
landscape and advances over land as the soil and vegetation have a limited capacity to absorb or attenuate 
this flow (Burns et al., 2005). In addition, higher runoff loads associated with development can result in 
dramatic reductions in the richness of plants which is evident in the low NDVI values within the canal 
system and around the fringes of the marsh area to the left of the canal system (Taylor, 1993). Together, 
the sparse vegetation, amount of impervious land surface area (Table 1.1) relative to the small amount of 
storm drain coverage (Table 1.2), and the degree of slope elevation (Fig. 1.3) further suggest that the 
majority of stormwater is inadequately captured or abated, and flows into the canal waters.  

 
4.2 OWTS and Water Quality  

Due to time constraints on the part of the county in gathering the remaining septic tank records, 
the data may not be fully representative of the entire canal system. The available data do, however, 
provide information on 129 of the septic systems. Studies show the age of a septic system, also known as 
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onsite wastewater treatment systems (OWTS), can affect its efficacy (Withers et. al, 2014). Generally the 
average septic system can last 20-35 years, however the range is highly variable for each system because 
of differing levels of maintenance provided by homeowners (Sewers, 2000). Given the reported age 
ranges, the average septic tank system in the canal system is approaching the end of its life expectancy 
(Fig. 1.5). From the available records, their age suggests existing systems may be presently capable of 
effective treatment, however, whether or not the necessary maintenance (i.e., pump every 3-5 years) and 
other site-specific recommendations have been carried out is unknown. In addition, only the connection 
request dates were available for some of the septic systems, suggesting that some of the septic systems 
currently in use may have installation records that date back further than we were able to find in the 
documentation. For some houses, the town was unable to locate permit records, further indicating there 
may be unknown systems unaccounted for in our study. 

 Statements found within the available septic system records present qualitative information 
regarding construction area suitability and installment requirements. These excerpts convey professional 
recommendations from the licensed state inspectors and environmental health specialists regarding 
OWTS in the canal system. For example, the statement from 133 Bowen Street mentions that the area is 
unsuitable for septic systems based on soil characteristics, and the statement from 511-512 N Shore Dr I 
demonstrates that water conservation in shared systems is highly advisable (Table 1.3). The suggestion 
regarding water conservation demonstrates that there are risks associated with septic system failures and 
overflow (Table 1.3). This written statement also illustrates that the burden to exercise severe caution is 
placed on the users. These notes also acknowledge the presence of abandoned septic tanks not currently in 
use. In particular, there may be several abandoned septic tanks with unknown standing wastewater 
volumes throughout the canal system that could pose concerns in the future (Table 1.3). Currently, there 
is limited information, research, and regulations regarding the management of abandoned septic tanks, 
thus little can be concluded regarding their role in the canal system. Overall, these excerpts imply the soil 
is unfit for septic systems, the presence of old septic tanks not in use, and that water conservation is 
highly advisable. 

 
4.3 Implications of Development Density  

In Carteret County, 68% of people use OWTS, and septic problems are known to occur in low-
lying, high density areas (Robertson et al., 1991). When many septic tank systems exist in a given area, 
the high density can reduce the effectiveness of soil filtration and render the treatment ineffective (Mallin, 
2013). Residential development can result in high bacteria concentrations in soil and receiving waters 
when more than one septic drain field is present per seven acres (Duda & Cromartie, 1982). Therefore 
septic tank density is another important factor when evaluating wastewater treatment efficacy (Parker et. 
al, 2010; Robertson et al., 1991). Across the canal system, housing density was moderate, but property 
lots may not have the water-holding capacity to adequately accommodate sustained septic system usage 
(HCP, 2008). Areas in the Atlantic Beach canal system, such as the north entrance, are of particular 
interest because this area has the highest housing density and is in close proximity to Bogue Sound (Fig. 
1.4). All potential septic system issues, including water quality patterns described and discussed in 
subsequent sections, could result in effluent material being carried out to the canal (HCP, 2008). These 
areas are directly exposed to the sound, meaning that if any effluent from septic systems entered the 
receiving waters, the sewerage constituents could be diluted effectively in the larger water body or could 
potentially impact the surrounding waterway. Although Atlantic Beach is not adjacent to any waters 
classified as Outstanding Resource Waters (ORW), it is bordered by high quality waters (HQW) and the 
shellfish harvesting waters of Bogue Sound (HCP, 2008). This emphasizes the necessity of conducting 
further study to determine the effects of high septic tank density on water quality in the area surrounding 
this system.  
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5. CONCLUSION  
 
The goal of this study was to better understand the processes influencing water quality indicators 

in the canal system. We aimed to provide a visualization of these factors that could aid in assessing their 
interconnectivity. We hypothesized that the land area was largely characterized by impervious surface 
cover with an inadequate amount of stormwater capture and vegetative land cover. The bulk of the results 
seemingly support this hypothesis, highlighting the potential factors that pose a risk to the water quality of 
the canal system. TThe physical characteristics of the canal system could contribute to negative impacts  
on water quality, but it should be noted possible confounding factors not considered here require further 
research. 

Water quality outcomes may differ during peak season. The shallow unsaturated zone, where the 
OWTS are located, should be taken into consideration for future studies as this zone can quickly become 
inundated during a precipitation event. Additionally, understanding how homeowners are managing and 
maintaining their septic systems may be helpful in order to more accurately assess the effectiveness of 
treatment, the potential for plumes, and the overall state of wastewater treatment in the canal system.  

Similar areas in NC, namely Greensboro and Wilmington, facing analogous stormwater issues 
have installed bioretention basins or rain gardens that have been shown to promote infiltration and 
stormwater capture (Li et al., 2009). In other areas in the United States, urban forestry initiatives and 
various hydrology models have demonstrated that adding vegetation, such as trees, can reduce runoff 
volumes (Zolch et. al, 2017). Retrofitting green infrastructure into existing areas has been shown to 
significantly reduce the volume of stormwater runoff (Dietz & Clausen, 2005). In addition, tidal salt 
marshes in particular are efficient in capturing suspended solids that contribute to inputs of organic 
carbon, and other cities have taken to restoring these areas to assist with promoting water quality (Stumpf, 
1983; Temmerman et al., 2013). These practical solutions could be applied to the existing development to 
improve the stormwater capture and attenuate runoff.  

In sum, although the canal system evaluated here may not experience much increase in 
development, the findings demonstrated here may be of aid when considering the impacts of future 
infrastructure.  
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Chapter 2: Circulation and Flushing 
 

1. INTRODUCTION 
 
 Understanding the processes that determine how water in a system renews itself is important in 

determining the potential for hazardous water quality conditions. A canal system with good flow 
continuously moves water throughout the system which ultimately disperses potentially hazardous 
materials. In comparison, water within a poorly flowing canal system would fail to fully circulate through 
the system, causing input concentrations to accumulate. Without proper circulation, a canal system can 
become vulnerable to impaired water quality due to the accumulation of contaminants from extraneous 
inputs, such as surface runoff. Assessing the flow conditions and the mechanisms that drive them are key 
aspects in analyzing the Atlantic Beach canal system. 

Flushing of a canal system is driven by tides, surface runoff, wind, and their interactions with the 
geometry of the canals (Defne & Ganju, 2015). With every tidal cycle, water is brought in to the system 
as resident water is cycled out. Incoming water during a flood tide mixes with preexisting water in the 
system and subsequently ebbs out, creating a net water movement of zero.  The tidal range in Bogue 
Sound, adjacent to the Atlantic Beach canal system, ranges from 0.6 m during neap tide to 1.1 m during 
spring tide. Post-storm surface runoff adds to baseline flow of groundwater and can contribute to an 
elevation gradient that causes water movement out of the canal system (Kirby-Smith, 1994).  

Additionally, wind can cause surface velocities to increase or decrease depending on relative 
direction. The effect of wind on circulation within a system varies, and can be an important factor in areas 
where there is minimal circulation from tides. Similarly, water density can affect the movement of water 
in the canal system. The density difference between dense saline water that enters the system due to tides 
and fresher less dense water affected by surface and groundwater inputs can result in a circulation into the 
canal near the bottom and out of the canal near the surface. Lastly, the geometry of the canal can factor 
into the movement and circulation of water, with narrow and or shallow parts of the canal accelerating 
currents and potentially restricting water flow.  
 A number of different approaches have been proposed for estimating how well a semi-enclosed 
water body, like a canal, is flushed. The residence time of a water parcel in a system the time it takes for a 
parcel of water to move out of the canal from a given position (Monsen et al., 2002), and can be estimated 
by  

/RT x u          (2.1) 
 

In this equation u  refers to mean velocity and x refers to distance to the canal exit. Another way of 
quantifying flushing is through the flushing time, which is the ratio of the total canal volume to the 
volume of water that enters the canal with tides (Monsen et al., 2002).                                                                    

                       
(1 )f

T
T

V

b P



       (2.2) 

Tf refers to the time-scale over which water in the system is renewed, assuming that the incoming water 
mixes entirely with the water already in the canal during every tidal cycle. V is the volume of the canal, T 
is the duration of a tidal cycle, and P is the volume of water that comes in during a tidal cycle. The return 
rate, b, represents the fraction of incoming water that was in the canal the previous tidal cycle. Because b 
is hard to quantify, the upper and lower bounds of Tf are usually calculated using a range of b values. 
These calculations regarding how long water stays and takes to leave can be complemented by drifter data 
that illustrate how water moves (Monsen et al., 2002). 
 We estimated the circulation and flushing of the Atlantic Beach canal system by measuring the 
components of flow mentioned above. This was done by deploying current profilers, releasing drifters, 
and taking bathymetry measurements to estimate canal volume. In order to observe the variability of the 
flow across the entire canal system, we sampled in two locations: a short canal near the top of the canal 
system and a long canal with a cul-de-sac further from the entrance of the canal system (Fig. 0.1). These 
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data will allow us to calculate residence time and the flushing time, as well as make assessments of the 
main drivers of flow in the canal system.  
 
2.  METHODS   
 

 We approximated circulation in the two canals through two main approaches: (1) releasing 
drifters in order to learn about the circulation of the surface of the canal, and (2) installing current 
profilers to learn about the circulation of water beneath the surface. Additionally, we collected bathymetry 
measurements in order to understand the shape and size of the canals. The creation of a bathymetric 
model for two of the canals allowed us to better understand the residence time and circulation of the canal 
system. 
 

2.1 Bathymetry Measurements 
We measured the bathymetries of the canals in order to better understand the general shape and 

depth of the canals and calculate the volume of water in the canal. Measurements were made while 
moving along the short and long canals in a shallow-bottomed 21ft boat. We collected data points every 
few meters. This resulted in around 130 and 250 data points in the short and long canals, respectively. At 
each location, Global Positioning System (GPS) coordinates, depth, and time were collected. A handheld 
GPS unit, measuring the latitude and longitude at various points, was used to obtain the location of a 
given depth measurement. GPS coordinates were recorded in Degree Decimal Minutes (DDM) and then 
converted into Universal Transverse Mercator (UTM). This allowed for a standard coordinate system 
between bathymetry and drifter coordinate measurements. Additionally, we used a depth sounder in order 
to record the water depth. Finally, time for each measurement was recorded in Eastern-Daylight-Time 
(EDT) and converted to Eastern-Standard-Time (EST) to match the time readings on the current profilers. 

Using records from the NOAA Tide and Water Levels database at Atlantic Beach, we adjusted 
the data points for tide by subtracting the water level relative to mean tide at the time of the measurements 
(NOAA Tide and Water, 2018). After retrieving the current profilers, we compared the water levels in the 
canal to the NOAA tide predictions  at the Atlantic Beach bridge in order to determine if there was any 
lag. Finally, we developed a bathymetric model to display the variations in depth in the short and long 
canals. 

 
2.2  Drifter Releases 

Grapefruit drifters were released in order to determine the surface movement of water in the short 
and long canal. In order to properly identify drifters when collected, we labeled them 1 through 24 with 
permanent marker prior to release.  We conducted drifter releases on four separate days, twice at flood 
tide and twice at ebb tide, in order to better understand the impact of different tidal cycles in the canals 
(Johnson et al., 2003). At ebb tide, as the water moved from high to low tide, we expected that the drifters 
would move out of the canals. During flood tide, as the water moved from low to high tide, we expected 
that the drifters would move into the canal. If the drifters experienced little movement, it would suggest 
that the canals did not experience high amounts of movement from tidal or wind currents.  

We released the drifters from 21 ft and 24 ft flat-bottomed boats at several locations in sequence 
from the end of the canal to the mouth to minimize boat disturbances. Drifters were released in groups of 
4 and 5 from the stern of the boat. We released drifters in groups of 5 at three releasing sites in the short 
canal and in groups of 4 at six releasing sites in the long canal (Fig. 2.1a). The releasing sites were around 
75 and 125 m apart in the short and long canals, respectively. The last set of drifters were released a 
couple of meters from the mouth of the canal. We recorded the drifter number, time, and GPS coordinates 
for each drifter during release. After approximately 30-60 minutes, we collected the drifters starting from 
the mouth of the canal and proceding to the end. Drifter collection at the mouth of the canals allowed for 
further minimization of disturbances created by the boat. During collection, drifter numbers, GPS 
coordinates, and times were re-recorded.  
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The estimated time to completely flush the short canal is between 0.428 and 0.857 days (Table 
2.1). In comparison, it would take between 1.836 and 3.672 days to completely flush the long canal. The 
difference in flushing times between the two canals can be explained by the tidal range in relation to the 
volume of water that each canal is estimated to hold. Assuming that each canal has a rectangular shape, 
the short canal holds an approximate volume of 7,141.5 m3, while the long canal holds around 73,354 m3. 
The ratio between volume that fluxes in and out with tides and the estimated volume that the canal holds 
at mean tide is larger in the short canal than the long canal.  
 

Table 2.1. Flushing times of each canal represented in days. This is the amount of time that it would 
take for the estimated volume of water in the canal to be replaced by tidal water. The volumetric flow 
rate is variable to the amount of incoming water that leaves the system in the same tidal cycle. A 
higher return rate of incoming water means a longer flushing time in the canal.  

 Short Canal  Long Canal 

% Return rate  Flushing Time (days) %  Return rate Flushing Time (days) 

0.00 0.42842 0.00 1.8359 

0.10 0.47602 0.10 2.0399 

0.20 0.53552 0.20 2.2949 

0.30 0.61202 0.30 2.6227 

0.40 0.71403 0.40 3.0599 

0.50 0.85683 .50 3.6718 

0.60 1.071 0.60 4.5898 

0.70 1.4281 0.70 6.1197 

0.80 2.1421 0.80 9.1796 

0.90 4.2842 0.90 18.359 

1.00 infinite 1.00 Infinite 

 
 

Estimated residence times are longer at the end of each canal. The end of the short canal had an 
estimated residence times of 8.68-28.11 hours and the end of the long canal had an average residence time 
of ≥ 29.13 hours (Table 2.2). Residence times near the mouth of the canals were 1.34-4.33 hours and ≥ 
1.59 hours respectively. Additionally, residence times were estimated to be higher in the long canal. Since 
the time and depth averaged velocity of the longer canal was going into the canal, only lower bound 
estimates were conclusive. 
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Table 2.2. Estimated residence times of a water parcel at the surface at each of the sampling 
locations. Upper and lower bound values were estimated at each location. (1A) Mouth of the short 
canal, (1B) End of the short canal, (2A) Mouth of the long canal (2C) End of the long canal. 

Location Estimated Residence Time ( Rt )  (hours) 

1A 1.34-4.33 

1B 8.68-28.11 

2A ≥ 1.59 

2B ≥ 15.81 

2C ≥ 29.13 

 
 
4. DISCUSSION 

 
4.1 Bathymetry 

 The variation in depth along both canals provides important information regarding transport of 
sediment in the canal system. Because the canals are manmade, it can be assumed that there was some 
uniformity in the way canals were originally constructed and excavated. Over time, sediments entering 
and exiting the canal were transported with the tide and currents, causing the bottom of the canal system 
to change. For example, in the short canal, the edges are much more shallow than the middle section. 
Over time, the edges of the canal system have been influenced by incoming currents and sediments, 
causing them to fill in slightly. Generally, areas with slower currents are able to settle the sediment at a 
quicker rate than areas subjected to stronger currents. As seen in the data collected from the current 
profilers, both canals experienced a relatively low current flow, allowing for an accumulation of sediment 
within the canal system.   

 
4.2 Drifters 

 In general, the drifter releases did not follow the expected patterns for ebb and flood tide. Pairing 
the drifter releases with wind data collected from a NOAA meteorological sensor at Duke Marine Lab 
during the time of release provided a possible explanation for the discrepancies in the releases.  

During the first drifter flood tide release on 8 October 2018, for example, there were strong 
easterly winds (Fig. 2.8a). This could explain the net movement of drifters to the west. During the 
following drifter release on 9 October 2018, during ebb tide, the drifters experienced their strongest net 
velocities as a system in both canals. Similar to the previous drifter release, there was a strong easterly 
wind during the time of release (Fig. 2.8b). The strong wind in addition to the ebb tide explain the strong 
velocities pushing the drifter out of the system. 

On 24 October 2018, the drifters displayed their largest variation regarding the direction of their 
movement (Fig 2.4). Pairing the drifter movement with their corresponding wind data explained some of 
the movement during the release, however, it does not explain why three of the release groups drifted 
northward. During the time of release, there were moderate northerly winds, which could have possibly 
created a slight southward movement in the canals (Fig. 2.8d). This explains why five of the six drifter 
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release groups were pushed toward the bottom southern side of the canals. It remains unclear, however, 
why the drifters in the short canal moved toward the northeast, as this contradicted both the movement 
from the tide and the wind. It is possible that the drifters were redirected by a nearby boat, or that 
buildings around that section of the canal redirected the wind flow. 

During the drifter release on 17 October 2018, the long canal experienced its largest velocities at 
the end of the canal (Fig. 2.4). In the middle and mouth of the canal, there was nearly no movement. 
During the time of release, it was flood tide and there were light westerly winds (Fig. 2.8c). If the canals 
are heavily influenced by wind, it is possible that winds were able to drive some of the movement of the 
drifters, causing the minimal movement displayed in the majority of the release areas. Although we are 
not sure why the drifters in the short canal moved in counteracting directions from the wind and tide, a 
possible explanation could be movement from a boat near the drifters, causing them to move further than 
the wind and tide would have pushed them without interference. The overall displacements of the drifters 
were relatively minimal and generally moved around 0.025 m/s or less.   

 
4.3. Current Profiler  

Based on the volumes calculated for short (7,141.5m3) and long (73,354 m3) canals it is 
reasonable that short canal peak velocities remained closer to 0 than those in the longer canal, assuming 
no significant water elevation differences between canals. The long canal is much larger, and requires 
more influx of water during a tidal cycle. However, higher velocities of water moving in and out of the 
canal did not result in faster estimated flushing times in the long canal, as the ratio between the flux of 
volume with tides and the total volume of water was much smaller. While the average velocity in the 
short canal was 0.0025 m/s moving out of the canal, the average velocity in the long canal was 0.0096 m/s 
moving into the canal. This may be due to error, as there are no other means of dispelling the water in the 
canal besides through the mouth. There may have been variations in the flow across the canal cross-
sections that were not captured in our current meter measurements. The average velocities computed from 
the measurements are very small relative to the instantaneous velocities observed, and it is likely that the 
average velocity for both canals was approximately to zero. 

The canal system is strongly influenced by tides. We can see the velocities moving into the canal 
with a flood tide and moving out with an ebb tide (Fig. 2.6). However, there is a definite gradient of 
velocities with depth. Surface velocities were more consistently moving outward, while bottom velocities 
were more consistently moving inward. We hypothesize that this is a result of the salinity gradient, and 
corresponding density gradient, along the canals, especially in the long canal.. The wind also appears to 
have a strong influence on circulation in the system. This hypothesis is supported by the NOAA wind 
data collected at the Duke Marine Lab station (Fig. 2.8). At the point where there is the biggest 
discrepancy in velocities with depth for the long canal, from 8-11 October 2018, there are strong easterly 
winds. On 12 October 2018, when the canal system was being affected by Tropical Storm Michael, winds 
increased in intensity and blew from the west, and this extreme weather event likely caused mixing. We 
can see this effect after 12 October 2018 in the velocity profile, where there is less discrepancy in 
velocities with depth. After the storm, top versus bottom velocities slowly started to return back to their 
original state before the storm. This could be further substantiated by measuring salinity profiles along the 
length of the canals. Residence times we calculated provide an estimate of how long water takes to leave 
the system. Measurements taken midway along each canal are not indicative of all areas within the canal. 
For example, at the closed ends of the canals, the velocities must go to zero. Therefore, even the upper 
bound estimate of the flushing time may be an underestimate of the actual time it takes for water to be 
flushed near the closed ends of the canals. The probability of underestimating the residence time is 
especially high in the back of the long canal because larger depths could hold in waters for a long time. 
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5. CONCLUSION 
 
To better understand the Atlantic Beach canal system several methodologies were used, including 

placing current profilers, releasing drifters, and using bathymetry measurements to identify the shape of 
the canal and calculate canal volume. Using these data, the flushing time, residence time, and time 
averaged velocity profile were calculated. Drifters measurements revealed details of the overall 
circulation. 

In general, the mouths of the canals appeared to have a fair amount of flow. Both the short and 
long canals were estimated to be able to flush in a few hours and the drifter data generally supported the 
idea of strong movement at the mouth. Based on the data, however, it is possible that the end of the long 
canal is infrequently fully flushed. Deeper water depths at the end of the long canal could cause it to have 
poor flushing and be vulnerable to stagnation. Drifter releases near the closed ends of the canals revealed 
little movement. The data also suggest that drifter movement may be primarily wind driven. Further, data 
from the drifter releases and current profilers indicate that a baroclinic pressure gradient is important for 
driving circulation in the system. 

Future studies with additional current profiler measurements taken throughout more of the canal 
system would better describe the water movement. Reliable salinity data down the water column could 
help explain the system’s stratification and quantify the along-channel salinity gradient. These findings 
will assist in understanding the mechanisms that drive flow and control flushing, thereby affecting water 
quality in the Atlantic Beach canal system.  
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Chapter 3: Nutrients 
 
1. INTRODUCTION 
 

Nutrients are substances that promote energetic biological processes  required for maintaining 
life. Nitrogen and phosphorus are two macronutrients that are vital to the existence of primary producers 
and bacteria in estuarine systems. Both nitrogen and phosphorus are necessary to sustain life at the base of 
the food chain, and each nutrient can be limiting at different times according to seasonal changes, human 
influence, or environment type (Paerl et al., 2009). Organisms can only be as productive as is allowed by 
the nutrient that is least abundant in the system, which is referred to as the law of minimum. Sufficient 
supplies of these nutrients in tandem allow microorganisms to proliferate, and established ratios of 
carbon, nitrogen, and phosphorus are commonly found in phytoplankton biomass and ocean waters 
(Redfield et al., 1963; Zweifel et al., 1993).  

Both nitrogen and phosphorus are delivered to coastal zones and are taken up and regenerated 
through nutrient cycling. Microorganisms like phytoplankton and bacteria are major drivers of nutrient 
transformations in coastal systems, and nutrient cycling processes are often complex (Arrigo, 2005). 
Nitrogen is fixed from the atmosphere or discharged from terrestrial sources into coastal zones. This 
nitrogen is assimilated into microorganisms as organic matter and accumulates in higher trophic levels. 
Bacterial decomposers break down this organic matter and release nitrogen back into the water column to 
be recycled by other organisms or released into the atmosphere. Some nitrogen is eventually buried in 
sediments and removed from the system (Herbert, 1999). Phosphorus enters coastal systems through 
erosion of mineralized material, and is also incorporated into microorganisms as organic matter and 
eventually undergoes sediment burial (Yang et al., 2016).  

When nutrients are added to a system in excess through anthropogenic inputs (e.g. runoff from 
agricultural processes, wastewater), higher concentrations can enhance phytoplankton and bacterial 
growth rates. The addition of excess nutrients to a system through anthropogenic inputs can result in 
harmful algal blooms, low oxygen events, and fish kills (Herbert, 1999). A higher abundance of 
microorganisms is detrimental to water clarity, safety for swimming and fishing, and the overall health of 
the ecosystem. Healthy nutrient levels make an ecosystem optimal to provide services to humans, which 
means that poor ecosystem health impacts human health (Myers et al., 2013). Currently, there are no 
overarching standards regulating nutrient levels in all North Carolina water bodies, but there are rules in 
place throughout the state monitoring nutrient loading in some bodies of water; however, the Atlantic 
Beach, NC canal system is not one of those water bodies (Schiavinato and O’Hara, 2016). There is no 
current regulation or monitoring of nutrient levels in the canal system, and so the extent to which nutrients 
may be influencing this system is relatively unknown. Thus, in this chapter, we (1) measure nutrient 
concentrations at multiple sites in the Atlantic Beach, NC canal system, and (2) determine the nitrogen 
flux characteristics in the sediments at these sites. We chose to do these analyses because both raw 
nutrient concentrations and flux dynamics are important to predict how the system cycles nutrients over 
time. 
 

2. METHODS 
 

2.1 Sample sites 
IWe used five study sites and a reference point. Sites 1A and 1B are located along the second most 

northern canal, Sites 2A, 2B, and 2C are located along the longest, curved canal, and the reference site 
(Reference 1) is located in the open waterway of Bogue Sound. Site 1A is located at the mouth of the 
short canal and Site 1B is located at the end of the short canal. Site 2A is located at the mouth of the long 
canal, Site 2B is located in the middle of the long canal, and Site 2C is located at the end of the long canal 
(Fig. 0.1).  
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2.2 Water column nutrient concentration analysis 
We measured nutrient concentrations from water samples taken at the water surface and near the 

sediment surface in each of the canals. We collected these water samples during four ebb tide and three 
flood tide events from 3-24 October 2018. We collected the water samples using a Van Dorn water 
sample. The samples were held in 250 mL containers on ice until being returned to the lab. We filtered 
the water samples to remove particulate material using glass microfiber filters with a 0.7 µm nominal pore 
size. 100 mL of water were filtered, and approximately 40 mL of water were left in 50 mL containers to 
be stored at -20°C until time of processing. Frozen nutrient samples were quick-thawed and ammonium 
(NH4

+), total dissolved nitrogen, combined nitrate (NO3
-) and nitrite (NO2

-), denoted NOx, and phosphate 
(PO4

3-) concentrations were determined using a Lachat QuikChem 8000 auto-analyzer (Lachat, 
Milwaukee, WI, USA; Lachat QuikChem methods 31-107-04-1-C, 31-107-06-1-B, and 31-115- 01-3-C, 
respectively). Detection limits for NOx, NH4

+, total dissolved nitrogen, and PO4
3- were 0.88 μg/L, 1.05 

μg/L, 1.80 μg/L, and 7.30 μg/L, respectively. 
 

2.3 Sediment nitrogen flux analysis 
Nitrogen flux analysis was based on a flux experiment that involved coring sediment at a site of 

interest and transporting that sediment to the lab for ex situ experiments. Sediment cores were obtained 
during ebb tide on 9 October 2018. Cores were taken at the mouths and ends of the canals (Sites 1A, 1B, 
2A, and 2C). Three replicates were obtained for each site. The cores were readied for experiments in an 
incubator with a continuous flow system by removing excess sediment, pressure-capping each cylinder, 
and attaching the cores to two tubes: one to constantly supply an inflow of water and the other to release.  
  At different time points, the water that exited from the cores and the water feeding into the cores 
were analyzed using the membrane inlet mass spectrometer (MIMS). This device accurately measures N2 
gas concentrations in water samples using a high pressure pump and gas-permeable tube. The change in 
concentrations of N2 gas over time with respect to an inert gas reveals if the core is performing net 
denitrification or nitrogen fixation. Nitrogen flux was calculated using the equation presented below: 
 

ݔݑ݈݂    ൌ
ሺ௢௨௧௙௟௢௪௡௜௧௥௢௚௘௡௖௢௡௖௘௡௧௥௔௧௜௢௡ି௜௡௙௟௢௪௡௜௧௥௢௚௘௡௖௢௡௖௘௡௧௥௔௧௜௢௡ሻሺ௙௟௢௪௥௔௧௘ሻ

௦௨௥௙௔௖௘௔௥௘௔௢௙௖௢௥௘௦௘ௗ௜௠௘௡௧௦
  (3.1) 

 
In addition, following the completion of the flux experiment, sediment subsamples from each of 

the cores were dried in ovens at temperatures of 350°C for 4 hours and then 550°C for 4 additional hours. 
This was to determine dry weights and 2 combustion weights which represented the labile and refractory 
organic matter (or the organic matter more easily and less easily utilized by microbes) in the sediment. 
These data were incorporated into the nitrogen flux analysis as well. 

 
2.4 Statistical analysis 

The statistical software JMP was used to gather statistical information about the concentration 
and flux data. The nitrogen concentration data were analyzed using a one-way analysis of variance 
(ANOVA), and differences between sites, between ebb and flood tide sampling times, between the long 
and short canals, and between surface and bottom water concentrations were examined for each of the 
nutrient parameters. The nitrogen flux data were analyzed using the Tukey-Kramer HSD test in 
conjunction with an ANOVA to detect means that are significantly different from each other. 
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Denitrification is the process of taking bioavailable species of nitrogen and converting them into inert 
nitrogen gas, which is not biologically available to most organisms. This removal of bioavailable nitrogen 
can mitigate some of the effects of anthropogenic nutrient loading and contributes to the bottom-up 
control of phytoplankton and bacterial communities in the system. 

Site 1B, located at the end of the short canal, had a significantly higher rate of net denitrification 
than the other test sites, which is consistent with field observations of the state of that site. The end of the 
short canal, (Site 1B) was fully vegetated by salt marsh plants and oysters and this more unperturbed and 
“natural” state may have supported a more extensive denitrifying community in the sediment. In contrast, 
the mouths of the canals (Sites 1A and 2A) and the end of the long canal (Site 2C) were located adjacent 
to hardened shorelines and no vegetation was observed at these sites. Hardened shorelines like bulkheads 
and seawalls are installed to prevent erosion and protect property, but can have detrimental impacts on the 
ecosystem services performed in the adjacent intertidal area (Gittman et al., 2015). One strategy to 
achieve both property protection and still support the natural coastal ecosystem is to utilize living 
shorelines, which contain both hardened and natural components. Living shorelines with salt marshes and 
fringing oyster reefs have been shown to support higher rates of denitrification when compared to 
hardened shorelines, and therefore the presence of these organisms can aid in the mitigation of excess 
nutrient deposition in coastal systems like the Atlantic Beach, NC canal system (Onorevole et al., 2018). 
 

5. CONCLUSION 
 

 Nutrient characteristics of the Atlantic Beach, NC canal system are important indicators of 
ecosystem health because they reflect anthropogenic inputs of nonpoint source water pollution, which 
influences microorganisms. The most important parameter that influenced nutrient concentrations and 
flux dynamics in this system was the location within the canals. Site 2C, located at the end of the long 
canal, had significantly higher levels of nutrient concentrations than other sites, and this is likely due to 
the low flushing and high exposure to the surrounding community of water in this canal. The highest rates 
of denitrification were observed at Site 1B, located at the end of the short canal, because this site was 
adjacent to a shoreline with living components like salt marsh grasses and oysters.  

Elevated nutrient levels are linked to increased turbidity, lower dissolved oxygen levels, and can 
stimulate harmful algal blooms. They negatively impact food resources and marine habitat, and can make 
water bodies unsafe for fishing and swimming. North Carolina has a growing population of over 10 
million residents; additional development and urbanization to accommodate growth is likely to result in 
increased nutrient runoff, and this poses a challenge for effective management of nutrient impairments 
(Schiavinato and O’Hara, 2016). However, it is promising that denitrification is occurring throughout the 
Atlantic Beach, NC canal system because this nitrogen removal process serves as a natural source 
alleviating the pressures excess nutrients can create. 
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Chapter 4: Primary Production 
 

1. INTRODUCTION 
 
Phytoplankton primary production and community composition are influenced by a variety of 

factors, including physical water properties such as flow rate and residence time, as well as light and 
nutrient availability (Cloern, 2001).  Autotrophic organisms provide one of the main sources of organic 
carbon to higher trophic levels in estuarine systems, making them integral to aquatic environments (Chen 
& Borges, 2009).  A rapid expansion or bloom of algae can be a natural and critical process for food webs 
of marine and freshwater systems.  However, when these blooms grow out of control and inhibit natural 
processes, or shift to harmful, toxin-producing species, it can be an indication of an increase in nutrient 
loading from sewage effluent, agriculture, or animal operations (Gilbert, 2016).  Algal blooms and 
eutrophication can have significant deleterious effects on ecosystems, and are known to cause hypoxic 
dead zones, significant shifts in trophic dynamics, and loss of essential habitat (Gilbert, 2016).  

It is evident that primary producers play a vital role in aquatic systems and can be an indicator of 
overall environmental health.  Further, an imbalance of phytoplankton due to anthropogenic influences 
can have detrimental effects on the health of ecosystems.  We conducted a detailed analysis of the 
primary producers in the canal system in Atlantic Beach, NC to better understand the water quality in 
terms of the phytoplankton community.  The canals are subject to influence by human activities due to 
their proximity to many residential homes, which could affect the primary producer community in the 
system via increased nutrient inputs, potentially leading to eutrophication.  Our goal was to determine the 
phytoplankton biomass, species abundance and composition, and productivity rates relative to 
environmental conditions in the canal system.  The data we collected can help to demonstrate the 
anthropogenic factors influencing the water quality of the system and whether the conditions of the canal 
should be improved through appropriate management strategies. 
  

2. METHODS 
 
In order to analyze the primary productivity, phytoplankton growth rate, and community 

composition of the Atlantic Beach canal system, we collected water samples at six selected sites on four 
dates: 3 October 2018, 9 October 2018, 17 October 2018, and 24 October 2018. Five of these sites were 
located within 2 Atlantic Beach canals, and the sixth was a reference site located in Bogue Sound outside 
of the canal system (Fig. 0.1). Samples were taken during ebb tide, with neap tides on 3 October 2018 and 
17 October 2018 and spring tides on 9 October 2018 and 24 October 2018 (NOAA Tide and Water, 
2018). These samples were analyzed for phytoplankton biomass, growth rate, and species composition. 

 
2.1 Field Measurements 

At each of the six sites, we collected samples at the surface and at depth in 250mL opaque bottles 
after 2 sample rinses. We took surface samples manually by holding the mouth of the bottle just under the 
surface, while samples at depth were taken immediately above the sediment surface using a Van Dorn 
Sampler. In addition to taking two water samples at each site, we recorded the GPS coordinates of the site 
and measured surface temperature, salinity, light levels, and total water depth. We measured temperature 
at the surface using a thermometer and salinity of each of the samples using a refractometer in the lab. We 
evaluated light levels with the use of a Secchi disk on all four sampling days, as well as with a Li-Cor 2π 
PAR sensor on a YSI 6600 Sonde on the third and fourth sampling days.  These two methods were 
compared to see how the less precise method (Secchi disk) compared to the more precise method (YSI 
Sonde).  Light attenuation can be found based on the light extinction coefficient per meter (K) calculated 
from the Secchi disk or YSI Sonde data collected in the field, using one of the following equations for the 
Secchi or Sonde data, respectively (Smith, 1990):  
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(1) K = 1.7/(Secchi depth)        (4.1) 
(2) K = ln(Id/I0)/-d          (4.2) 

 
In equation 2, Id represents light flux to depth d, I0 is light flux at depth 0 (immediately below the 

surface), and d is depth below the surface in meters.  Total depth was approximated by extending the 
Secchi disk to the sediment using the markings on the Secchi disk rope, which indicated depth in 0.25 
meter increments.  Latitudinal and longitudinal coordinates for each sampling location were recorded 
using a handheld GPS on the first sampling day, and a smartphone on the remaining three sampling days. 

We performed three different laboratory analyses: chlorophyll-a content via fluorometry as an 
indicator of phytoplankton biomass, growth rate and photosynthetic efficiency via radioactive carbon 
tagging, and the characterization of phytoplankton community species composition via microscopy. 

 
2.2 Chlorophyll-a Analysis 

To perform the chlorophyll-a analysis, we vacuum filtered 50 mL of each water sample onto 
separate glass microfiber filters. We prepared three replicate filters of each sample in order to increase our 
procedural validity. We then folded the filters in half using forceps, wrapped them in labeled foils, and 
froze the samples at -20°C for at least 24 hours. To quantify the chlorophyll-a pigment present, we placed 
the filters in vials of 10mL acetone, sonicated the samples, and froze them for 12-24 hours. Afterwards, 
we centrifuged the vials, refiltered the acetone using a syringe to remove filter fragments, and then 
measured the fluorescence using a Turner Trilogy benchtop fluorometer.  The fluorometer was calibrated 
using two standards: a blank and a solid standard with a known reading (31.38 µg/L). The concentrations 
given by the fluorometer were adjusted for the dilution in acetone and the value given by the blank 
standard.  The equation used to calculate the final chlorophyll-a concentration in µg/L is: 
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 (4.3) 
 
These concentrations are used as an indicator of biomass and photosynthetic productivity. 

To examine potential relationships between nutrients and phytoplankton, two linear regressions 
were conducted: the first was between chlorophyll-a concentration (a proxy for phytoplankton presence), 
and dissolved inorganic nitrogen (the sum of nitrate, nitrite, and ammonium concentrations), and the 
second was between chlorophyll-a and phosphate concentrations. These nutrient types represent much of 
what is bioavailable to microorganisms, and therefore are the best parameters to examine in relation to 
phytoplankton abundances. 
 

2.3 Growth Rate and Photosynthetic Efficiency 
We analyzed four of the six sampling sites for growth rate of the phytoplankton at the surface;  

these samples were from the end of the short canal (1B), the mouth of the long canal (2A), the end of the 
long canal (2C), and the reference site. This procedure determines the growth rate of the phytoplankton in 
each sample in terms of carbon uptake after exposure to a range of light levels. We tagged 100 mL of 
each water sample with 400 µL of a 14 mCi/L, 14C radioactive bicarbonate solution. We then dispensed 2 
mL aliquots into twenty-four vials. Twenty-one of the tagged subsamples were placed into the 
Photosynthetron, a controlled environment algal culturing system which exposes the subsamples to a 
measurably attenuating light source ranging from 0.183 µE/m2/s to 531.561 µE/m2/s for approximately 30 
minutes at in situ water temperatures specific to each sampling day (Lewis and Smith, 1983). Three 
subsamples served as controls and were not exposed to light. After incubation, we acidified the samples 
and controls with 500 µL of HCl and left them under the fume hood for approximately 24 hours before 
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neutralizing with 500 µL of NaOH and finally adding 10 mL of scintillation cocktail. After waiting 
approximately 24 hours, we placed the samples in the LS 6000 Liquid Scintillation Counter, which 
measured the uptake of radioactive 14C into each sample during its exposure to light in the 
Photosynthetron in terms of degradations per minute (DPM). The equation used to convert DPM to 
productivity in µgC/µgChla/hour is: 
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We used these data to compare light exposure to photosynthetic activity and to model the biomass 

growth rate as indicated by carbon uptake. This allowed for the determination of a photosynthesis vs. 
irradiance relationship fitting the following equation, where P is photosynthetic productivity measured in 
µgC/µgChl-a/h, Pmax represents the maximum carbon fixation due to light saturation, α represents the 
slope of the photosynthetic curve at unsaturated light levels, and PAR is photosynthetically activated 
radiation measured in µE/m2/s (Jassby and Platt, 1976): 
 

    ܲ ൌ ሺܲ݉ܽݔሻ݄݊ܽݐ ቀఈ∗௉஺ோ
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ቁ                  (4.6) 

 
We used this relationship to illustrate the potential productivity of the phytoplankton in the 

analyzed sites. We used incident irradiance data recorded at the Duke University Marine Lab and light 
attenuation data collected in the field to determine the actual irradiance levels and subsequent biomass-
adjusted productivity rates through the water column and over the course of the day at the selected 
sampling dates and locations. We derived growth rates from the calculated productivity values using 
chlorophyll-a concentration and the conversion to biomass based on an assumed ratio of 50g C • g Chl-a-1 
(Lefèvre et al., 2003). This allowed us to characterize the productivity and growth rates of the 
phytoplankton in the selected sites throughout the canal system given the true natural light and 
environmental conditions, species-specific tendencies, the canal flushing rate, and other abiotic factors. 
 

2.4 Species Identification Via Microscopy 
We carried out microscopic species identification by first preserving 50mL subsamples in Lugol’s 

iodine solution. We then placed these samples into 15 mL settling cylinders to prepare slides, and then 
viewed the samples at 400x using a Leica DMIRB inverted microscope (Wetzlar, Germany).  We 
identified phytoplankton species, relative abundances, and made generalizations about the patterns in 
frequently observed species.  This analysis was completed for surface samples from four sites (the end of 
the short canal (1B), the mouth of the long canal (2A), the end of the long canal (2C), and the reference 
sample) on one sampling day (24 October 2018).  We analyzed diversity by listing species and genera 
present throughout the slides we examined (listed in Table 4.3).  Cryptophyta and euglena densities were 
also analyzed by counting the number of each within the grid cells in the middle of the slides.  Organisms 
partially in the grid were considered to be “within” the grid and were counted towards the total number of 
units counted. This was completed for 8 slides for each of the 4 sites.  The densities were standardized 
using the following equation: 
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Skeletonema (diatom) 2A, 2C 

Raphidophyta (genus Chattonella) 1B, 2C 

Ditylum (diatom) reference 

Lithodesmium (diatom) 1B 

Asterionellopsis glacialis (diatom) 2C 

 
Table 4.4.  Cell counts (cells/mL) of cryptophyta and euglena in 4 surface samples collected on 10/24. 
Site Taxonomic group Cell counts (cells/mL) 

1B Surface Cryptophyta 346 

2A Surface Cryptophyta 8950 

2C Surface Cryptophyta 7452 

Ref Surface Cryptophyta 158 

1B Surface Euglena 0 

2A Surface Euglena 276 

2C Surface Euglena 749 

Reference Surface Euglena 0 

 
4. DISCUSSION  

 
4.1 Field Measurements 

Field measurements were taken to see how salinity, temperature, and depth would affect the 
primary producers in the canals.  Because we sampled before low tide each time, the depths did not vary 
greatly between sampling dates.  The depths are reflected in Figure 4.1, in which the Photosynthetically 
Active Radiation (PAR) values at the end of the short canal (1B) did not attenuate to the same extent as 
the other sites, because the water depth was shallow and the light was able to penetrate the entire depth.  
PAR designates the spectral range of solar radiation from 400-700 nanometers that photosynthetic 
organisms are able to use in the process of photosynthesis, which attenuates with depth as light is 
absorbed and scattered through the water column (Mōttus et al., 2011).  This attenuation, and the overall 
depth of the canal, affect productivity of photosynthetic organisms.  Overall, all of the sites had very 
similar PAR vs depth curves, with the main difference between them being the length of the asymptote 
(determined by the depth of the site).   

In terms of the other abiotic parameters measured, the salinity was typical of an estuarine system 
in close proximity to tidal influence and did not vary among sites.  Additionally, no correlation between 
salinity and chlorophyll-a was found after conducting a linear regression comparing the two parameters 
(R2=.108).  Likewise, no correlation was found between temperature and chlorophyll-a (R2=.004). 

 
4.2 Chlorophyll-a Analysis 

Due to its presence in all photosynthetic organisms, chlorophyll-a is commonly used as a 
measurement of water quality and as an indicator of phytoplankton abundance and primary productivity 
in aquatic systems. Chlorophyll-a biomass reflects the influence of both growth and loss processes, and is 
considered a consistently reliable indicator of primary production.  Chlorophyll-a concentrations fluctuate 
naturally, and are often highest after rain events, which flush nutrients from land into adjacent water 
systems (Boyer et al., 2009). This is potentially relevant in our study due to the influence of Tropical 
Storm Michael in North Carolina occurring between the second and third sampling days, as well as 
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Hurricane Florence occurring shortly before the start of the sampling study, because each event brought 
high amounts of rainfall to eastern North Carolina. These events may have led to results that do not reflect 
the normal seasonal conditions of the canals, including in regards to the biomass of phytoplankton, by 
either increasing their biomass with the addition of nutrients to the system or decreasing their biomass by 
flushing out the system. 

The North Carolina standard for chlorophyll-a in lakes, reservoirs, and other waters subject to 
growths of microscopic vegetation is a maximum of 40 μg/L, as designated by the NC Department of 
Environment and Natural Resources (Surface Waters and Wetland Standards, 2007). At all sites, the 
median chlorophyll-a concentrations were less than half of this standard. The highest observed median 
concentration was 19.87µg/L at the end of the long canal (2C). 

In both of the two Atlantic Beach canals selected for quality assessment, chlorophyll-a 
concentration was marginally higher than that of the reference location in Bogue Sound. In general, 
productivity is highest nearer to the surface, where light still penetrates the water column (Fig. 4.1). 
However, the chlorophyll-a concentrations within the canal system did not exhibit significant difference 
between surface and depth samples based on a t-test of paired means. This provides the basis for our 
assumption that productivity is fairly consistent through the column and is determined primarily by light 
with little influence of density- or salinity-driven stratification, which is an assumption used in the 
determination of productivity through the water column. The water column is fairly shallow and well-lit, 
with a relatively small tidal range in the estuarine system driving the tidal currents of the area; these 
factors may also contribute to the lack of significant difference between surface and depth samples. 

Trends in chlorophyll-a concentration between sampling locations and over time were statistically 
significant in the surface samples. However, this is not true in the samples at depth; statistically 
significant changes in concentration were not found between locations or over time. Throughout our 
sampling dates, chlorophyll-a concentration changed non-monotonically, with particularly low values on 
17 October 2018 in both surface and depth samples. This is likely a result of Tropical Storm Michael, a 
hydrologic event which may have flushed out the existing phytoplankton community preceding 17 
October 2018. On 24 October 2018, one week after the sampling date immediately following Tropical 
Storm Michael, chlorophyll-a concentrations in all sites were similar to that in the two sampling dates 
prior to Tropical Storm Michael, indicating that the system had returned to a normal range of productivity 
levels. Other than this event, there was little variation among dates, neither as a function of temperature 
decreasing with the season, nor with the changing tidal magnitudes from spring to neap tide. 
 Differences in median concentrations between sampling locations were statistically significant at 
the surface, but not at depth. The long canal consistently had higher chlorophyll-a and thus more 
phytoplankton biomass. In the surface samples, this level increased from the mouth to the end of the 
canal. Possible explanations for this include the housing density at the longer canal (canal 2) – higher 
housing density is an indicator of bioavailable nutrients (Chapter 1: Spatial Analysis: Section 3.3, Figure 
1.4; Hobbie et al., 2017). Additionally, canal 2 was the longest canal and thus had a lower flushing rate 
with increasing distance away from the mouth, allowing for the greatest phytoplankton population 
expansion (Chapter 2: Circulation and Flushing). 

Both dissolved inorganic nitrogen and phosphate concentrations were significantly negatively 
correlated with chlorophyll-a. This indicates that higher abundances of phytoplankton are associated with 
lower nutrient levels in the system. Nutrient concentrations are negatively correlated with increased 
presence of phytoplankton because the community present in the water column is absorbing those 
nutrients and using them for growth. This trend is consistent with investigations of daily variation in 
nutrients in relation to chlorophyll-a (Li et al., 2012). This connection between nutrients and 
phytoplankton could be concerning in the face of cultural eutrophication because as nutrient levels 
increase over time, the resources available to phytoplankton for growth increase. High phytoplankton 
density causes high turbidity and lower light penetration, and cyanobacteria grow best under these 
conditions, which can result in harmful algal proliferation (Chorus and Bartram, 1999). When growth like 
this occurs, the effects of the toxic algal blooms and shifts in primary producer abundance could be felt 
more severely by the system.  
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4.3 Growth Rate and Photosynthetic Efficiency 

The relationship between photosynthesis and incident irradiance is fundamental to the study of 
phytoplankton ecology.  This relationship is not fixed; rather, the photosynthetic response will adjust 
according to fluctuations in ambient environmental conditions (Lewis and Smith, 1983).  The 
Photosynthesis vs. Irradiance models (Fig. 4.8) show photosynthetic productivity in each of the samples 
at a full range of irradiance exposure and how the analyzed samples fit these models based on the 
irradiance exposure during analysis. The sampling dates of 9 October 2018 and 17 October 2018 
demonstrated the highest biomass-adjusted growth rates at light saturation, while the first and final 
sampling dates (3 October 2018 and 24 October 2018) exhibited the lowest growth rates at all sites. The 
differences in growth rate (indicating photosynthetic efficiency) both within each site over time and 
between the four analyzed sites were statistically significant. 

Over the course of a day, the end of the short canal (1B) consistently exhibited the highest 
average photosynthetic efficiency based on its daily growth rate, while the end of the long canal (2C) 
exhibited the lowest on average (Fig. 4.9). This reflects the lower overall maximum photosynthetic rate at 
light saturation at the end of the long canal (2C; Fig. 4.7). However, productivity was highest in site 2C 
and lowest in site 1B (Fig. 4.10). As with site 2C, the mouth of the long canal (2A) exhibited a lower 
average daily growth rate than the end of the short canal (1B), yet 2A had a similar rate of productivity as 
well as a higher average chlorophyll-a concentration, when compared to site 1B. The primary productivity 
rates at the three analyzed sites ranged from 0.075 to 1.6 g C •m-2 •d-1. These are typical of productivity 
values in nearby North Carolina estuaries; in the Neuse, productivity has been found to be around 0.78 g 
C •m-2 •d-1 (Fisher et al., 1982) or 1.24 g C •m-2 •d-1 (Boyer et al., 1993). In the Newport River, 
productivity was found to be around 0.3 g C •m-2 •d-1 (Fisher et al., 1982). It is important to note that the 
end of the long canal (2C) was the deepest site and the end of the short canal (1B) was the shallowest 
(Chapter 2: Circulation and Flushing: Section 3.1, Figure 2.3). Light attenuated most rapidly at site 2C 
and much of overall productivity in aquatic ecosystems occurs in well-lit surface waters. Factors such as 
these may create preferable conditions in site 2C for a larger population, albeit one with lower 
photosynthetic efficiency, such that 2C was the location of the greatest rate of primary productivity. 
Additional reasons for these results may include increased nutrient input to site 2C based on proximity to 
sewage systems and residential areas (Chapter 3: Nutrients: Section 3.1, Figure 3.2), as well as low 
flushing rates in 2C (Chapter 2: Circulation and Flushing: Section 3.3, Table 2.2). The calculated 
photosynthesis and growth rates showed intrinsic growth rate and the differences therein throughout the 
canal system based on possible physiological characteristics of the phytoplankton communities; however, 
other factors contributing to cell loss, such as grazing and sinking, may also have an impact on the 
measured population sizes at different sites. Although we did not account for the loss parameters, the net 
growth rate calculated from the intrinsic rate due to cell division and the dilution factor allows the 
determination of the impact of these two factors on the total biomass present in the canal systems. The 
results also suggest a potential difference in phytoplankton species composition throughout the canal 
system, as both of the analyzed sites in the long canal had lower photosynthetic efficiencies than the sites 
in the short canal. To determine the ability of the phytoplankton population to grow within the context of 
hydrologic dynamics of the canal system, it is necessary to compare these daily growth rate values with 
the flushing rates of the canals. These comparisons suggested that growth is not likely in any of the canals 
due to high flushing rates (Table 4.2). In all sites, the flushing of the canals apparently outpaced the 
potential for growth. 
 

4.4 Species Identification Via Microscopy 
Euglena is a genus of more than 1,000 single-celled flagellated species featuring both plant and 

animal characteristics. Studies have shown that they are often prevalent in waters receiving high organic 
matter inputs (Caldwell, 1946). Of the four surface samples analyzed, the abundance of Euglena was 
highest at the end of the long canal (2C), and occurred at a density of 749 cells/mL. The mouth of the 
long canal (2A) was the only other site where Euglena were found, which were at a lower density than the 
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end of the long canal (2C) (276 cells/mL). Euglena were not identified at the end of the short canal (1B) 
or the reference site.  They could be present at these sites, but were not observed on the slides for the 
single sampling day analyzed. More analysis would be needed to make conclusions about the presence or 
absence of species at all of the sites. The higher density of Euglena at the end of the long canal (2C) could 
be indicative of higher organic matter inputs, due to the proximity to higher densities of homes with 
septic tanks (Chapter 1: Spatial Analysis: Section: 3.3, Figure 1.5) influencing water quality or the longer 
residence time at this site (Chapter 2: Circulation and Flushing: Section: 3.3, Table: 2.2). 

Cryptophyta, unicellular algae known to thrive over a range of aqueous habitats from marine to 
freshwater, were one of the most abundant taxonomic groups present in the four samples analyzed.  
Cryptophyta were present at all sites, and were found in the highest densities at the mouth of the long 
canal (2A) and end of the long canal (2C) with 8950 and 7452 cells/mL, respectively. The sites in the 
long canal (canal 2) had the highest density of both cryptophyta and Euglena. It is likely that the higher 
nutrient levels in this canal support a higher abundance of phytoplankton. More specifically, the end of 
the long canal (2C) had the highest levels of all of the nutrient parameters tested except for nitrate and 
nitrite, further supporting that this canal is more heavily impacted by anthropogenic nutrient inputs which 
may support higher phytoplankton counts. The reference site had the lowest densities of cells of both 
taxonomic groups. This could be indicative of the higher flushing rate at this site outpacing the growth 
rate of phytoplankton, leading to a lower abundance of species presence at this site. However, further 
microscopic analysis across more dates and at more locations is required to accurately assess the diversity 
of phytoplankton in the canal system. 
 The highest cell counts of cryptophytes and euglenids were found at the mouth and end of the 
long canal (sites 2A and 2C), the two sites with the lowest growth rates yet the highest phytoplankton 
biomass.  This could be explained by the known slower growth rates of flagellates (such as euglenids and 
cryptophytes). Smayda (1997) cites that flagellates are generally slower growers than diatoms, and points 
to their lower maximum photosynthetic rates as the driver (Smayda, 1997). This is supported by our data; 
the longest canal had the highest flagellate cell counts (Table 4.4), the lowest growth rates (Fig. 4.9), and 
the lowest maximum photosynthetic rates at mouth and end (2A and 2C) for nearly all sampling dates 
(Fig. 4.8). 
 

5. CONCLUSION 
The assessment of phytoplankton community throughout the canal system shows higher biomass 

presence within the canals relative to the reference site, likely due to factors such as low flushing and 
anthropogenic nutrient additions. Biomass in the long canal was higher than in the short canal ; however, 
the average growth rate over the depth of the column was higher in the short canal than in the long canal. 
This may in part be due to the physical attributes of the short canal, in which the well-lit, shallower water 
column facilitates productivity throughout; it also may indicate different physiological characteristics of 
the phytoplankton in the different canals, as the maximum chlorophyll-normalized productivity at light 
saturation was lower in the long canal based on our analysis, indicating a larger but generally less 
productive population of phytoplankton. Species composition was different within the canals than in the 
surrounding area in Bogue Sound, with much higher observed densities of euglenids and cryptophytes, 
supported by higher nutrient availability. In general, the phytoplankton community is not a threat to the 
water quality within the season and time interval of this study, as concentrations of total phytoplankton 
biomass in chlorophyll-a are below state standards. However, the canals are more conducive to 
phytoplankton growth and residence than the deeper, nutrient-deplete, unconfined, regularly-flushed areas 
of the waterway. Further urban development contributing to eutrophication or confinement of water in the 
canal systems may increase phytoplankton presence to potentially hazardous concentrations. 
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Chapter 6: Bacteria  
 

1. INTRODUCTION 
 
Harmful strains of bacteria are a primary concern when assessing water quality because they pose 

a significant threat to human health. Not only can bacterial pathogenic strains jeopardize water quality 
and impact the surrounding community, they can also compromise a variety of important ecosystem 
services. Filter feeders harvested from the ecosystem, such as oysters, concentrate pathogenic bacterial 
strains, particularly Vibrio spp., at concentrations 10 times higher in their bodily tissues than the 
surrounding water (Froelich et al., 2017). Although oysters are not impacted by Vibrio spp. they 
accumulate, consumption of an infected oyster can cause negative impacts to human health such as 
gastroenteritis or septicemia. Bacterial communities such as fecal indicator bacteria (FIB) can be 
introduced into the system through a variety of sources such as sewage runoff, leaky septic systems, 
wildlife, and sewage overflows (Ohrel & Register, 2006). Large storm events, like Hurricane Florence or 
Tropical Storm Michael, can increase sewage runoff into water systems in close proximity to human 
development, creating massive outbreaks of bacterial infections (McMichael, 2015). Analyzing the 
bacterial pathogenic communities present in the Atlantic Beach canal system would provide insight into 
the water quality as it varies spatially and temporally in the canals used for this study that may have 
management implications. 

 
1.1 Fecal Indicator Bacteria and Thresholds  

To address the concern of water quality in the Atlantic Beach canal system, four key bacterial 
groups were identified: Enterococcus, total coliforms, Escherichia coli (E. coli), and Vibrio spp. These 
specific bacteria were prioritized because they are representative of other dangerous bacterial 
communities (Ohrel & Register, 2006). Although total coliforms and Enterococcus are generally not 
pathogenic, they serve as proxies for other notable strains like Norovirus, hepatitis, and typhoid fever, 
whose presence is a human health concern. E. coli is a type of fecal indicator bacteria (FIB) present in the 
intestines of warm-bodied animals and freshwater systems that could make an individual extremely sick 
upon consumption (Jin, 2004). The state of North Carolina, among many other municipalities, uses 
concentrations of Enterococcus to assess coastal recreational water quality due to the cost effective nature 
and relative simplicity to estimate (USEPA, 1986). Bacteria counts are quantified by colony forming units 
(CFU) or by a most probable number (MPN), which are synonymous. Recreational waters are considered 
to be unsafe at Enterococcus concentrations above 104 colony forming units (2.01 log MPN) per 100 mL 
of seawater. Threshold values for E. coli as outlined by the Environmental Protection Agency (EPA), are 
320 CFU (2.51 log MPN) per 100 mL of sampled water (USEPA, 1986). Water that contains values 
above these thresholds is deemed unsafe for recreational use, but lesser values still pose a risk to human 
health and should not be ignored. 
 

1.2 Vibrio spp.  
 Vibrio species are autochthonous, meaning they are naturally found in aquatic environments, but 

their abundance is influenced by a variety of anthropogenic activities. Past research provides evidence 
that the abundance of Vibrio spp. bacteria can be increased by excess nutrients, copepods, and suspended 
solids on which Vibrio spp. aggregate (Carli, 1993). Their abundance provides information on the risk of 
bacterial infection of open wounds from contact with canal water (Egidius, 1987). Vibrio vulnificus and 
Vibrio parahaemolyticus are both pathogens that contaminate shellfish and the humans that consume 
them (Froelich et al., 2017). Vibrio vulnificus infects open wounds that may result in amputation of the 
infected limb or death (Egidius, 1987). 
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2. METHODS 
 

2.1 Field Methods  
To assess the aforementioned native and FIB communities present in the Atlantic Beach canal 

system, we took 1-L water samples from designated sample sites. These sample sites were the mouth and 
end of the short canal (1A, 1B), the mouth and end of the long canal (2A, 2B), a historical reference site 
that contained previous Enterococcus data from NC Department of Environmental Quality (Historical 
Reference), and a reference site in Bogue Sound (Reference) (Fig. 0.1). Sampling took place during ebb 
tide on 3 October 2018 and 9 October 2018, and during both ebb and flood tide on 17 October 2018 and 
24 October 2018. Ebb tide samples were prioritized because they are indicative of bacteria originating 
from land sources rather than being diluted with incoming sea water, and are therefore expected to be the 
samples with the poorest water quality. Flood tide samples would provide insight on whether tidal 
influence is enough to displace or dilute the bacterial communities present in the canal. 

We obtained the water samples by using an extended one-meter PVC handle to avoid contact 
with the water. This device held the 1-L sample bottle at the end of a meter-long handle and was secured 
with a bungee cord. After rinsing the 1-L bottle three times with water taken from the designated site, the 
sample was then kept, the cap to the bottle was secured, and the bottle was kept on ice in an insulated 
cooler. Surface temperature and salinity were measured in situ using a hand-held thermometer and 
refractometer, respectively. 

 
2.2 Lab Methods 

Water samples were analyzed within six hours of collection for total coliforms, E. coli, 
Enterococcus, and Vibrio spp. Total suspended solids was determined from the water samples as well. 

2.2.1 Enterococcus 

We determined Enterococcus abundance by membrane filtration following methodology outlined 
by the EPA (USEPA, 2002). For each site, three different volumes (3 mL, 20 mL, and 50 mL) of the 
thoroughly mixed 1-L water sample were filtered on to a 47mm wide 0.45-micron membrane filter and 
carefully placed on mEI agar. After the samples were plated, they were incubated face down at 41�C for 
24 hours before being counted. The samples were incubated face down to prevent condensation 
influencing developing colonies. After the incubation time had elapsed, colonies were counted and later 
multiplied to provide the number of CFU per 100 mL of sampled water. 

2.2.2 Total Coliforms and E. coli 

We enumerated both total coliforms and E. coli by following the EPA’s guidelines for assessing 
recreational water quality (USEPA, 1986). Total coliforms and E. coli concentrations were estimated 
using IDEXX Quanti® -Tray methods, Colilert-18® media packets, and 1:10 mL dilutions of sample to 
deionized water. Each water sample was replicated twice to detect processing errors. Solutions were 
mixed by inverting the total sample twice, then Colilert-18® media packets were added to the solution 
and inverted until mixed for 2 minutes. We then drained the solutions into IDEXX Quanti® -Tray 2000 
trays and sealed them using a Quanti® -Tray Sealer Plus and placed them into a 35�C incubator.  Each 
IDEXX Quanti® -Tray 2000 consists of 49 large and 48 small wells. After incubating for 18 hours, each 
IDEXX tray was examined for the presence of yellow large and yellow small wells because they are 
positive indicators of total coliform bacteria. Large and small wells on the IDEXX Quanti®-Tray that 
were yellow in color and also fluoresced under a blacklight were considered positive for E. coli and were 
counted in the same manner as total coliform bacteria. From the number of yellow large and small wells, 
the most probable number was calculated using the IDEXX calculator to determine the number of 
bacteria that were present in the diluted sample. Due to the 1:10 mL dilution of sample to deionized 
water, the most probable number was multiplied by 10 to give the number of CFU per 100 mL of sampled 
water. 
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2.2.3 Vibrio spp.  

We determined the abundance of Vibrio spp. using membrane filtration methods on CHROMagar 
that followed previously established guidelines (Kaysner & DePaolo, 2004). For each site, three different 
dilutions were made with phosphate buffered saline (PBS) and the water sample depending on in situ 
salinity. All of the collected water samples were consistently above 24.1 PSU, so the same PBS and water 
sample dilutions were used throughout the whole study (Table 6.1). These dilutions were made because 
salinity limits the habitable range of different Vibrio spp. (Blackwell & Oliver, 2008). After the solutions 
of PBS and sample were thoroughly mixed through repeated inverting, 5 mL of the mixed homogeneous 
solution was filtered using a 47 mm wide 0.45-micron membrane filter and plated on CHROMagar. After 
the samples were plated, they were incubated face down at 35�C for 24 hours before being counted. 
Once the incubation period passed, we counted the plates for white, purple, and blue colonies that were 
referenced using the proprietary guidelines (CHROMagar, 2018). White colonies indicate the presence of 
Vibrio alginolyticus, purple colonies are indicative of Vibrio parahaemolyticus, and blue colonies 
represent Vibrio vulnificus. After counting the colonies, each plate count was multiplied appropriately 
given the salinity to give the number of CFU per 100mL of water sample. 
 
Table 6.1. Vibrio spp. dilutions for salinity greater than 24.1 PSU.  

Dilution A Dilution B Dilution C 
Sample: 3 mL 
PBS: 30 mL 

Sample: 5 mL 
PBS: 28 mL 

Sample: 10 mL 
PBS: 23 mL 

2.2.4 Total Suspended Solids (TSS)  

Past research suggests bacteria that aggregate on suspended sediments have longer residence 
times in a sample area (Fries et al., 2008). To determine TSS, 25 mm wide 0.8 mm glass microfiber filters 
dried at 55�C at least a week before use were initially massed to an accuracy of 0.001 grams. After 
massing, 100 mL of sample were filtered. Two replicates were done for each canal. The filters were dried 
at 55 �C for 7 days. After 7 days, the filters were re-massed, and their differences were recorded. The 
difference between the weight of the filter was averaged between the two replicates and multiplied by 10 
to determine TSS in grams per liter in the sample. 

 
2.3 Analysis  

         To normalize the data, the raw bacteria data were log transformed after being converted to 
CFU/100 mL to better determine smaller changes in bacterial abundance. The average bacterial 
abundance for each site was graphed to assess spatial differences between sites, and also by day to 
determine temporal changes in bacterial abundance of the canal system. Historical Enterococcus 
abundance for the historical reference site was obtained from North Carolina Department of 
Environmental Quality (NCDEQ) site 47A, which included data from 1998-2018. 

Bacterial communities were analyzed by comparing the abundance of each strain to antecedent 
rainfall that fell within 24 hours before sampling time. This relationship was investigated because large 
amounts of rainfall would cause more land-based runoff to infiltrate the system, which could increase the 
abundance of bacterial strains originating from anthropogenic sources (Ackerman & Weisberg, 2003). 
These data were gathered from the weather underground website, using site KNCATLAN1, which is at 
the opening of the Atlantic Beach canal system. 
         In addition to analyzing R2 values, an ANOVA test was also used to determine the statistical 
significance of relationships from regression analysis. These tests were determining significant 
relationships between average bacterial abundance at each canal and site-specific salinity, temperature, 
and TSS. 
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Figure 6.7. Concentrations of Vibrio spp. and salinities 
across the different sampling sites, averaged over sampling 
dates with standard error bars. 

Figure 6.8. Changes in Vibrio spp. abundance averaged by 
date across all sample sites with standard error bars, which 
trended more strongly with measured salinity  

         Linear regression and ANOVA statistical analyses were also used to determine correlations 
between Vibrio spp. and salinity, temperature, and TSS. With the exception of the relationship of TSS and 
V. parahaemolyticus, all observed relationships were found to be negative. Vibrio parahaemolyticus was 
found to be significantly negatively correlated with salinity (ANOVA p=0.030), which also exhibited a 
high R2 value of 0.7350 (Table 6.2). Vibrio vulnificus showed a significant and strong negative correlation 
with TSS (R2  =0.6613, ANOVA p=0.049). 
 

Table 6.2. Vibrio spp. linear regressions with salinity, temperature, and TSS with significance indicated through ANOVA tests.  

 
 
 
V. alginolyticus 

 Salinity (PSU) Temp (Celsius) TSS  (g/L) 

Regression Equation y = -4.0402x + 
38.064 

y = -1.0229x + 25.288 y = -1.0822x + 6.0306 

R2 value  0.6279 0.6471 0.3034 

ANOVA p-value 0.060 0.054 0.66 

 
 
V. 
parahaemolyticus 

Regression Equation y = -3.7951x + 
35.255 

y = -0.6973x + 24.124 y = 0.301x + 3.0171 

R2 value  0.7350 0.3989 0.0311 

ANOVA p-value 0.030 0.18 0.74 

 
 
V. vulnificus 

Regression Equation y = -3.4488x + 
33.951 

y = -0.6267x + 23.874 y = -1.613x + 5.97 

R2 value 0.4488 0.2383 0.6613 

ANOVA p-value 0.145 0.33 0.049 

 
3.4 Total Suspended Solids  

         Values for total suspended solids were found to be the highest at the historical reference site and 
the site at the end of the short canal (1B; Fig. 6.9, left). Opposite of what was expected, values for TSS 
tended to decrease with distance into the canal system. When comparing the dates and tidal cycles that 
were sampled, TSS were highest on 17 October 2018 during flood tide, closely followed by 9 October 
2018 (Fig. 6.9, right). Values of TSS were lower during ebb tides than flood tides on 17 October 2018 
and 24 October 2018. 
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4.3 Evaluation of Total Suspended Solids 
Total suspended solids were found to be a small determinant in bacterial concentrations. Spatially 

across the canal system, total suspended solids values were greater at locations closer to the exit of the 
canal system to Bogue Sound (Fig. 6.2). High bacterial abundance in tandem with low TSS values were 
found at the end of the longest canal, site 2C. The low amount of flushing, stagnant water, stratification, 
and larger water depth in this part of the system may have impacted the resuspension of solids and 
therefore bacteria residing in benthic sediments. Water passing over benthic sediments at a low velocity 
offers little frictional energy to elicit the resuspension of sediments in comparison to the larger frictional 
energy transferred by water moving at a higher velocity. Furthermore, bacterial concentrations at the 
reference site were consistently lower than all canal sites, but contained the 3rd highest values for TSS. 
This may be a result of high velocity current at the reference site, which retained sediments in suspension 
but actively flushed bacterial communities. This was supported by the low R2 value and high ANOVA p-
value produced from most linear regression analyses, with the exception of V. vulnificus, with TSS and 
bacterial abundance (Figs. 6.3, 6.5, and 6.6). Combining all of these patterns, there is evidence to suggest 
that parameters other than TSS play a larger role in determining bacterial abundance in the Atlantic Beach 
canal system. Past research provides abundant evidence that temperature and TSS consistently impact 
bacterial community concentrations, so the lack of relationship depicted is likely due to the narrow scope 
and sample size allowed for this study (Fries et al., 2008). 

 
 

5. CONCLUSION 
 There are several factors that influence the abundance of bacterial communities that pose a threat 

to water quality in the dynamic Atlantic Beach canal system. The geometry of the canal system is a large 
determinant in the abundance of observed bacterial communities. Sites that were located at the end of a 
canal and further inland had higher bacterial concentrations, likely resulting from low flushing and slower 
moving water. Sites that were closer to the canal entrance had lower concentrations of the observed 
bacterial communities, but higher values for TSS (Fig. 6.9). 

Tidal influence can alter the bacterial concentrations found in the Atlantic Beach canal system. 
Ebb tide can bring harmful bacterial communities into the canal system from groundwater (Shergill et al. 
2004). Flood tide can aid in the flushing of harmful strains that entered the system during ebb tide, which 
was observed in E. coli and V. vulnificus concentrations (Figs. 6.3 and 6.7). Large storm events could 
alter normal tidal cycles and characteristics of the canal system through storm surge, turbulent mixing due 
to strong winds, and large influxes of fresh water through precipitation runoff. These combined effects on 
the bacterial community can persist through time in areas of low flushing. Enterococcus, total coliforms, 
and the fecal indicator bacteria E. coli all increased in abundance after Tropical Storm Michael (Figs. 6.2 
and 6.4). Vibrio spp. in particular, undergo range shifts as a result of the large influxes of fresh water due 
to a large storm event (Blackwell & Oliver, 2008). Shifts in Vibrio spp. distribution has the potential to 
cause the more dangerous strains, V. parahaemolyticus and V. vulnificus, to reside in higher 
concentrations, which can increase the risk of infection. Overall, the interplay of tidal influence and large 
storm events play a large, and opposite, roles in the abundance of notable strains of bacteria present in the 
Atlantic Beach canal system. Even though concentrations of indicator bacteria resulting from this analysis 
resided below threshold values for water quality standards, their concentrations still pose a concern for 
human health and should be closely monitored.  
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Chapter 7: Synthesis 
 

In order to assess water quality within the Atlantic Beach canal system, we sought to spatially 
analyze the impacts of development in the canal system, as well as characterize water circulation, nutrient 
concentrations, primary production, filtering capacity, and bacterial concentrations as they varied within 
the selected canals. From the compilation of our data analysis, characteristics associated with higher water 
quality were found in areas of high flushing and tidal influence in which flood tide displaced the 
contaminants that entered the system during ebb tide. Additionally, canals that contained saltmarsh, 
notably the end of the shorter canal 1B, had higher rates of denitrification, which aid in the expulsion of 
excess nutrients from the system. The end of the longest canal, site 2C, consistently contained the highest 
nutrient, phytoplankton, and bacterial concentrations. This pattern can likely be explained by the low 
flushing rates determined in this study; however, even with the low degree of flushing at the end of the 
long canal, FIB concentrations rarely surpassed the threshold established by the USEPA and were 
consistent with trends seen in the last decade. 

Groundwater discharge is positively correlated with low-tide elevation, and thus may be an 
explanation for the high nutrient, phytoplankton, and Enterococcus levels observed during ebb tide on 17 
October 2018. During ebb tide, water drains out of the canals and into the surrounding water body, 
changing the water pressure within the sediment pores and effectively draining the sediments (Riedel et 
al., 2010). This would result in nutrients and Enterococcus that effectively moved through the subsurface 
and entered the canal through groundwater after the rain event. This excess nutrient input from 
groundwater could result in phytoplankton blooms that can disturb the water quality within the canal 
system. Further research into the role of groundwater in this system would help describe the interplay 
between excess human inputs of nutrients, bacteria and their interactions with tidal cycles. 

The long residence time at the ends of the long canals may also lead to the persistence of 
pollutant-containing runoff, which is exacerbated by impervious surface cover and can result in increased 
nutrient loading of nitrogen and phosphorus into receiving water bodies (Glasoe and Christy, 2004). 
Under certain conditions, septic tank systems can introduce concentrations of nitrogen enriched runoff as 
well as bacteria, such as Enterococcus, into both surface and groundwater (Parker et al., 2010; Mallin, 
2013). The shallow unsaturated zone is characterized by a high water table and porous soils that provide 
little attenuation and absorption of pollutants (Withers et al., 2014). The distribution and role of 
impervious surfaces and OWTS are important to analyzing over-land water movement and inputs into the 
receiving waters of the canals. Stormwater runoff management provides a way to support environmental 
water quality, and further research can establish canal-specific measures. No immediate risk of harmful 
algal bloom formation or immensely concerning bacterial concentrations were detected in this study; 
however, nutrient loading and bacteria levels in the canal system require additional research in greater 
depth and across a broader temporal scale, as water quality and associated hazards could fluctuate 
seasonally. The ability of septic systems to keep up with the high traffic associated with warmer seasons 
should be tested. If problems are identified, impacts can be directly addressed and mitigated. 

Consistent monitoring of water quality throughout the year would broaden the understanding of 
processes influencing the system. This knowledge will aid in designing improvements and adaptable 
solutions to promote and maintain water quality throughout the canal system. 
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